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Summary

A computer program has been developed to accurately and automatically predict the 1H and 13C chemi-
cal shifts of unassigned proteins on the basis of sequence homology. The program (called SHIFTY) uses
standard sequence alignment techniques to compare the sequence of an unassigned protein against the
BioMagResBank – a public database containing sequences and NMR chemical shifts of nearly 200
assigned proteins [Seavey et al. (1991) J. Biomol. NMR, 1, 217–236]. From this initial sequence align-
ment, the program uses a simple set of rules to directly assign or transfer a complete set of 1H or 13C
chemical shifts (from the previously assigned homologues) to the unassigned protein. This ‘homologous
assignment’ protocol takes advantage of the simple fact that homologous proteins tend to share both
structural similarity and chemical shift similarity. SHIFTY has been extensively tested on more than 25
medium-sized proteins. Under favorable circumstances, this program can predict the 1H or 13C chemical
shifts of proteins with an accuracy far exceeding any other method published to date. With the expo-
nential growth in the number of assigned proteins appearing in the literature (now at a rate of more
than 150 per year), we believe that SHIFTY may have widespread utility in assigning individual mem-
bers in families of related proteins, an endeavor that accounts for a growing portion of the protein
NMR work being done today.

Introduction

Sequence databases such as the Protein Information
Resource (PIR) (George et al., 1996) or SWISS-PROT
(Bairoch and Apweiler, 1996) and structure databases
such as the Protein Databank (PDB) (Bernstein et al.,
1977) are playing an increasingly important role in all
aspects of molecular and structural biology. By using
powerful search engines (Altschul et al., 1990), alignment
tools (Orengo et al., 1992) or threading programs (Bry-
ant, 1996) developed especially for these databases, mo-
lecular biologists are often able to predict the structure or
function of newly sequenced proteins simply on the basis
of sequence homology. Similarly, many X-ray crystallo-
graphers also make use of these same databases and
software tools to assist with the experimental determina-

tion of protein structures through automated homology
modeling and molecular replacement (Sali et al., 1990).
While X-ray crystallographers have long realized the
utility of sequence and structural alignments in their
work, NMR spectroscopists, in general, have not. Indeed,
despite the establishment of the BioMagResBank (BMRB)
in 1990 (Seavey et al., 1991) as a public repository of
protein sequence and protein chemical shift data, NMR
spectroscopists have yet to make a concerted effort to
develop software tools necessary to exploit this valuable
resource.

One example where sequential and structural alignment
could have a significant impact on biomolecular NMR is
in the area of chemical shift assignment. Most resonance
assignment schemes depend on the spectroscopist having
some knowledge of approximate chemical shifts or expec-
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ted chemical shift ranges for the residues under question.
Clearly, if it were possible to accurately predict the 1H, 13C
and 15N NMR chemical shifts of a given protein prior to
assignment, it would make the sequential assignment pro-
cess substantially easier, significantly faster and much less
dependent on NOE or scalar connectivity information.

In the early days of protein NMR, several investigators
proposed using X-ray structures of the protein of interest
and semiempirical chemical shift theories to directly cal-
culate protein chemical shifts. This was done with the
hope that it might facilitate the assignment process (Per-
kins and Wüthrich, 1979; Perkins and Dwek, 1980). How-
ever, limitations in the theory of chemical shifts led to
only modest success. With recent advances in semiem-
pirical and quantum mechanical theories of chemical shift
calculation (Ösapay and Case, 1991,1994; Herranz et al.,
1992; Williamson et al., 1992; de Dios et al., 1993), it is
now possible, from crystal structures, to predict α-1H
chemical shifts with correlation coefficients of between
0.74 and 0.84 and NH shifts with correlation coefficients
of between 0.57 and 0.71. However, most NMR spectros-
copists have found that this level of accuracy is not yet
sufficient to assist with the assignment processes. Further-
more, not all proteins of interest have readily available
high-resolution X-ray structures.

An alternative and potentially far more accurate ap-
proach to chemical shift prediction is to use the fact that
homologous proteins often have not only similar struc-
tures but similar chemical shifts. In other words, if one
can identify a homologous protein which has already
been assigned, it should be possible to use those same
assignments (with suitable corrections) to predict the
chemical shifts of an unassigned homologue. We call this
concept ‘homologous assignment’ in analogy to the more
familiar concept of homology modeling. This relatively
simple concept has recently been described (Redfield and
Robertson, 1991; Bartels et al., 1996; Gronwald et al.,
1997) and put into limited practice. However, it has only
been applied to situations where the homologue or homo-
logues had been previously identified through a manual
comparison or through intensive literature searches. With
more than 550 different peptides and proteins already
assigned by NMR and with this number expected to
nearly double by the year 2000, it is increasingly unlikely
that the average NMR spectroscopist will be able to rely
on his/her intuition or to have the time to spend dozens
of hours scanning through the literature to determine if
other homologues to his/her protein of interest have al-
ready been assigned. Rather, we expect that NMR spec-
troscopists will eventually have to turn to the BMRB and
the appropriate software tools to quickly and automati-
cally get these answers.

In anticipation of this need, we decided to combine the
searching and alignment software that has made the PDB
and PIR databases so useful for X-ray crystallographers

with the sequence and chemical shift information con-
tained in the BMRB. To this end, we have developed a
computer program (called SHIFTY) which automatically
selects, aligns and assigns 1H and 13C chemical shifts of
unassigned proteins using a slightly modified version of
BMRB (containing nearly 200 different proteins) and a
table of experimentally derived random coil chemical
shifts (Wishart et al., 1995a). In this communication we
describe, in detail, how SHIFTY performs the alignments
and predicts the chemical shifts. We also assess the results
from tests performed on nearly 30 different proteins, each
of which has at least one homologue in our chemical shift
database. In addition, we compare the accuracy of these
‘homologous assignments’ to predictions obtained by
direct calculation from the corresponding X-ray crystal
structures. On the basis of these and other results, we dis-
cuss the potential applications and limitations of SHIFTY
and the concept of homologous assignment.

Materials and Methods

The databases
Individual data files from the BMRB (Seavey et al.,

1991) were manually scanned, selected and downloaded
from the BMRB server (http://www.bmrb.wisc.edu). Only
those peptides and proteins containing reasonably com-
plete 1H assignments collected in aqueous conditions
between pH 2.0 and 7.5 and at temperatures between 5
and 60 °C were included. A total of 147 distinct poly-
peptide chains were identified. In assembling the 1H data-
base, the BMRB flatfile format was converted into a
more compact multicolumn format with individual col-
umns containing (i) the residue number; (ii) the one-letter
amino acid code; (iii) the secondary structure; and the
chemical shifts in the following order: (iv) NH; (v) αH;
(vi) βH1; (vii) βH2; (viii) γH1; (ix) γH2; (x) δH1; (xi) δH2;
(xii) εH1; (xiii) εH2. Nondegenerate pairs of α, β, γ, δ
and ε chemical shifts were ordered such that the largest
value was always placed in the leftmost column. Aromatic
resonances were excluded to simplify the presentation and
to expedite the chemical shift predictions. This 1H chemi-
cal shift database was supplemented with an additional 28
proteins from a previously prepared collection (Wishart
et al., 1991), giving a grand total of 175 separate poly-
peptides. Chemical shifts in this 1H database are variously
referenced to TSP and DSS, but because 1H chemical
shift differences between these standards are so small
(Wishart et al., 1995b), no further corrections were made.
On the other hand, ambiguities in referencing the 13C
chemical shifts made many of the BMRB 13C assignments
unusable. Consequently, the 13C database used in this
paper was assembled from data originally used to develop
the 13C chemical shift index (Wishart and Sykes, 1994).
This updated database contains 13C α, β and carbonyl
chemical shifts (as well as αH shifts) from 18 different
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proteins all referenced to DSS. Together, the 13C and 1H

Fig. 1. Sample output from a SHIFTY run using bovine pancreatic trypsin inhibitor (BPTI) as the query sequence. This particular example shows
the alignment and predicted 1H chemical shifts derived from the homologous PTI type E protein.

databases in this modified version of the BMRB contain
a total of 193 polypeptide chains representing 11 062
residues and nearly 56 000 chemical shift assignments.
Both databases are used by the program to identify and
align the query (or unassigned) protein to an assigned
homologue or set of homologues. The program also uses
a collection of experimentally derived random coil 1H and
13C NMR shifts obtained by measuring the chemical shifts
of disordered hexapeptides (Wishart et al., 1995a) in 1 M
urea solutions. This ‘random coil’ database is used to
predict chemical shifts of unmatched or nonidentical
residues as described below.

The algorithms
SHIFTY makes use of two algorithms. One algorithm

is used for sequence comparison and alignment and the
other is used for sequential assignment or chemical shift
prediction. Sequential alignment and comparison are
performed using the dynamic programming method of
Needleman and Wunsch (1970) as implemented in the
program NWALIGN (Wishart et al., 1994). In this algo-
rithm, an input sequence (typically belonging to the un-

assigned protein) is systematically compared to each of
the ~200 protein sequences in the chemical shift database
using an amino acid scoring matrix similar to the Day-
hoff PAM250 matrix (Dayhoff et al., 1983; Wishart et al.,
1994). Gap insertion and extension penalties, in combina-
tion with the amino acid similarity scores and secondary
structure information, are used to determine the align-
ment or parsing of the two polypeptide chains as well as
the overall sequence similarity score. Upon completion of
the alignment and scoring process (which typically takes
a few seconds), the highest scoring sequences are selected
and each of the pairwise alignments is passed on to the
second algorithm.

In this second stage, chemical shifts from the sequence
selected from the database are assigned to the query se-
quence. This assignment may be done in one of three ways:

(1) In the situation where aligned residues match exact-
ly, the chemical shifts are directly transferred from the
database protein to the query protein with no numerical
adjustment. Hence, if an alanine in the query protein is
aligned with an alanine in the database homologue, the
complete set of alanine shifts from that database residue
is written to the query residue.
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(2) In the situation where two aligned residues differ,

A B

C

Fig. 2. Comparison of the predicted (A) α-1H, (B) NH and (C) α-13C chemical shifts with the observed chemical shifts of troponin C (turkey) based
on the values derived from a SHIFTY alignment with calmodulin (Drosophila). The correlation coefficient (r) for each of the graphs is given in
the lower right corner.

the database protein’s shifts are subtracted from the data-
base residue’s random coil shifts (Wishart et al., 1995a)
and these differences are added to the random coil shifts
corresponding to the query residue. Hence, if an alanine
in the query protein is aligned with a proline in the data-
base homologue, the proline chemical shifts are subtrac-
ted from random coil proline shifts and these differences
are added to the random coil alanine shifts. In this par-
ticular example, only the alpha and beta 1H shifts of
proline could be used as predictors of the alanine shifts
(proline does not have an amide 1H shift).

(3) In the situation where a residue from the query
protein lines up with a gap (i.e. a null residue) in the
database protein, or vice versa, no chemical shift predic-
tion is made.

It should be noted that when non-glycine α-1H chemi-
cal shifts are being predicted from glycine residues, the
average α-1H chemical shift of the two glycine protons is
used.

The program
SHIFTY is written in ANSI standard C and has been

compiled, tested and run on both SUN and SGI UNIX
workstations as well as PCs operating with LINUX.
Using the program’s parameter file, users can select the
database (their own or the database packaged with the
program), the gap insertion and gap extension penalties
as well as the scoring matrix to be used in the alignment
process. SHIFTY runs as a simple text-based program

and requires only the query sequence as input. A sample
of the SHIFTY output is shown in Fig. 1. This output
file includes the sequences of both the query and the
database protein as well as indicators of the sequence
similarity (equal signs for identical residues, stars for
similar residues and blanks for dissimilar residues) in the
leftmost columns. The predicted chemical shifts are shown
throughout the remaining columns. The order of the 1H
chemical shifts is (i) NH; (ii) αH; (iii) βH1; (iv) βH2; (v)
γH1; (vi) γH2; (vii) δH1; (viii) δH2; (ix) εH1; and (x) εH2.
The order of the 13C chemical shifts is (i) αH; (ii); αC;
(iii) βC; and (iv) CO. Typically, the amount of time re-
quired to perform both the alignments and the chemical
shift predictions is less than 10 s on a SUN Sparcstation
5. The program is available from the authors on request.

Results and Discussion

In assessing SHIFTY we used the program to predict
a complete set of 1H shifts for 25 different proteins, each
of which had at least one homologue in our chemical
shift database. Three assessment criteria were used: (i) the
overall accuracy of the predicted shifts versus the observed
chemical shifts; (ii) the accuracy of the predicted shifts
versus those predicted from high-resolution X-ray struc-
tures using the methods of Ösapay and Case (1991,1994)
or Williamson et al. (1992); and (iii) the variation of the
prediction accuracy with percent sequence identity.

Figure 2 illustrates one example of the generally high
quality of predictions that can be obtained with SHIFTY.
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In this case, the predicted HN, αH and α-13C chemical

TABLE 1
COMPARISON BETWEEN THREE DIFFERENT METHODS OF CHEMICAL SHIFT PREDICTION

Protein PDB Resolution
(Å)

Ösapay and Case Williamson et al. SHIFTY

αH NH αH NH αH NH

Lysozyme (hen) 193L 1.33 0.85 0.45 0.88 0.57 0.99 0.99
Calbindin (bovine) 3ICB 2.30 0.73 0.40 0.85 0.61 0.99 0.99
HPr (B. subtilis) 1SPH 2.00 0.51 0.04 0.88 0.60 0.93 0.87
Troponin C (turkey) 5TNC 2.00 0.80 0.17 0.81 0.36 0.92 0.89
PTI (bovine) 6PTI 1.70 0.76 0.24 0.89 0.73 0.93 0.85
Bungarotoxin 2ABX 2.50 0.14 0.19 0.26 0.20 0.84 0.72
HPr (E. coli) 1POH 2.00 0.57 0.42 0.55 0.47 0.64 0.51

Average 0.− 0.− 0.62 0.27 0.73 0.51 0.89 0.83

The correlation coefficients for the methods of Ösapay and Case (1991) and Williamson et al. (1992) are based on the given crystal structure
coordinates.

shifts of turkey troponin C (the query protein) are plotted
against the experimentally observed chemical shifts as
determined by Slupsky et al. (1995). For this example,
Drosophila calmodulin (Ikura et al., 1990), which had the
highest level of sequence identity to troponin C (46.2%),
was used as the homologous predictor protein. As can be
seen by these three graphs, the agreement between pre-
dicted and observed chemical shifts is particularly strong
for the αH and α-13C shifts, with correlation coefficients
of 0.92 and 0.98, respectively. As might be expected, the
correlation is not as high for the amide chemical shifts (r
= 0.89). The average (i.e. rms) error between the observed
and expected αH chemical shifts is 0.18 ppm, whereas for
the NH and α-13C chemical shifts it is 0.32 and 0.93 ppm,
respectively.

In order to compare these results to those that might
have been obtained if one used the X-ray crystal structure
of troponin C to predict the chemical shifts, we used the
programs of Ösapay and Case (1991) and Williamson et
al. (1992) to calculate 1H shifts using the PDB coordinate
file 5TNC (Herzberg and James, 1988). The correlations
between the predicted shifts and observed shifts for the
method of Ösapay and Case were determined to be 0.80
and 0.17 (for the αH and NH shifts, respectively), while
for the method of Williamson et al. they were found to be
0.81 and 0.36, respectively. Despite the disadvantage of
having to use only a distantly related protein (Drosophila
calmodulin) for its predictions, it is clear that SHIFTY
outperforms the other two methods, both of which had
the distinct advantage of working with the high-resol-
ution crystal structure of troponin C. A more appropri-
ate comparison might have been to use the X-ray crystal
structure of Drosophila calmodulin (PDB 4CLN, Taylor
et al., 1991) as the template instead of troponin C. When
this was done, the performance of the two coordinate-
based methods, relative to SHIFTY, dropped a further
20%.

Additional comparisons between αH and NH chemical
shift predictions derived from the coordinate-based

methods of Ösapay and Case and Williamson et al. versus
those derived from SHIFTY are shown in Table 1. For
every case in which direct comparisons were possible, it
is clear that SHIFTY outperformed the other two co-
ordinate-based techniques. On average, the correlation
coefficients for SHIFTY were 20–40% better for αH
chemical shifts, while for NH chemical shifts they were up
to 300% better. Particularly striking is SHIFTY’s substan-
tive improvement in NH chemical shift prediction accu-
racy relative to the other two techniques. In determining
the correlation coefficients for SHIFTY, it is important
to note that only those residues predicted by the program
were included in these calculations. Unpredicted gaps
(total = 4) and unmatched termini (total = 3) meant that 32
out of a total of 673 residues (less than 5%) did not have
their αH or NH chemical shifts predicted by SHIFTY.
However, excluding these 32 residues from the predictions
of Ösapay and Case and Williamson et al. did not change
their correlation coefficients in any measurable way.

Because SHIFTY makes its predictions on the basis of
sequence and chemical shift homology, perhaps the most
important question to address is how its performance
varies with the sequence identity of the homologues used
in the prediction process. As one might expect, the pres-
ence of a database homologue which has 99% or 100%
sequence identity with the query protein will invariably
allow SHIFTY to predict the query protein’s shifts with
99% or 100% accuracy. Obviously as the sequence simi-
larity falls, the quality of the predictions should fall too.
In Fig. 3 we plot the quality of the αH and NH chemical
shift predictions for each of the query proteins versus the
percent sequence identity of the database homologues
that were used to predict their chemical shifts. These data
are summarized in more detail in Table 2, where we have
included not only the αH and NH data but also the βH
results. Insufficient data were available to plot the same
curve for 13C chemical shifts, but indications are that this
curve would closely follow the αH distribution. From
these scatter diagrams, and the superimposed hyperbolic
curves, it is clear that the quality of the chemical shift
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predictions falls off rapidly once the pairwise sequence

A

B

Fig. 3. Graphs illustrating how the correlation coefficients between
predicted and observed (A) α-1H and (B) NH chemical shifts vary
with the percent sequence identity of the homologues used in the
prediction process. The curves shown in both graphs are approximate
and are only intended to facilitate visual comparisons.

identity falls below 35%. Through extensive curve fitting,
we have found that the relationship between the correla-
tion coefficient (r) and the percent sequence identity (%
ID) can be expressed as follows:

rαH = 1.16 − 16/(% ID) for % ID > 15 (1)

rNH = 1.20 − 20/(% ID) for % ID > 15 (2)

rβH = 1.03 − 3/(% ID) for % ID > 15 (3)

From Eqs. 1–3 we can conclude, at least in situations
where there is more than one database homologue, that
one only needs to use the predicted chemical shifts de-
rived from the most similar homologue to obtain the best
chemical shift estimates. This result is similar to the con-
clusions reached by Gronwald et al. (1997) using their
more elaborate multiple alignment approach. It is also

apparent that below the 35% level of sequence identity,
SHIFTY will perform no better (and often worse) than
the methods of Ösapay and Case (1991,1994) or William-
son et al. (1992) which calculate chemical shifts directly
from crystal structure data.

As with any predictive process, it is important to be
able to provide a quantitative estimate of the error associ-
ated with any particular prediction. We have found that
four very simple equations can be used to predict the
overall rms error (in ppm) for predicted αH, NH, βH and
13C chemical shifts. All four equations are based on the %
ID between the query protein and the database homo-
logue. These formulae are

rmsd (ppm) = 0.4 − 0.004 × (% ID) for α-1H (4)

rmsd (ppm) = 0.8 − 0.008 × (% ID) for NH (5)

rmsd (ppm) = 0.6 − 0.006 × (% ID) for βH (6)

rmsd (ppm) = 2.0 − 0.02 × (% ID) for 13C (7)

In assessing the accuracy and utility of this homolo-
gous assignment method, we also investigated whether
these predicted shifts could be used directly in the assign-
ment process. Using an approach originally developed by
Redfield and Robertson (1991) based on ‘minimal chemi-
cal shift distance’, we wrote a simple computer program
which compared an observed set of chemical shifts (from
the query protein) with a predicted set (from the match-
ing protein). Each set of predicted chemical shifts, belong-
ing to a single spin system, was compared to each mem-
ber of the observed set. The predicted/observed pair of
spin systems having the smallest absolute chemical shift
difference (as determined by a weighted sum of the αH,
NH and side-chain proton chemical shift differences) was
removed and the ‘observed’ spin system was assigned to
that particular ‘predicted’ spin system. This process was
repeated for each spin system in the predicted set until
no more spin systems were left. In this way, the observed
set of chemical shifts could be sequentially assigned pure-
ly on the basis of their similarity to the predicted chemi-
cal shifts derived from SHIFTY. While the data from
this simulated sequential assignment experiment were
somewhat idealized and the program was not fully op-
timized, it is nevertheless quite instructive to see how
well this simple-minded assignment scheme worked. The
results from this particular test are summarized in Table
3.

As might be expected, those pairs of proteins sharing
the highest level of sequence identity (>85%) generally
permitted a near-perfect assignment (>92% correct). Inter-
estingly, when the sequence identity dropped below 85%,
our assignment scheme was still able to correctly assign
more than 70% (on average) of all resonances even when



335

the sequence identity dropped to as low as 35%. Further-

TABLE 2
RELATIONSHIP BETWEEN SEQUENCE SIMILARITY AND 1H CHEMICAL SHIFTS PREDICTED THROUGH HOMOLOGOUS
ASSIGNMENT

Query protein Matching protein % identity αH correlation NH correlation βH correlation

Lysozyme (hen) Lysozyme (hen) 100 1.00 1.00 1.00
Lysozyme (hen) Lysozyme (turkey) 093.7 0.99 0.99 0.98
Calbindin (bovine) Calbindin (porcine) 086.8 0.99 0.99 0.99
PTI (type E) PTI (type K) 061.4 0.96 0.89 0.98
HPr (B. subtilis) HPr (S. aureus) 060.9 0.93 0.87 0.96
Lysozyme (hen) Lysozyme (human) 060.8 0.90 0.87 0.96
EGF (mouse) EGF (human) 060.4 0.92 0.94 0.95
Anthopleurin A ATX I toxin 059.2 0.86 0.86 0.97
Plastocyanin (spinach) Plastocyanin (algae) 050.5 0.91 0.80 0.94
Troponin C (turkey) Calmodulin (fruit fly) 046.9 0.92 0.89 N/A
BPTI (bovine) PTI (type E) 043.1 0.93 0.85 0.94
BPTI (bovine) PTI (type K) 042.1 0.93 0.83 0.93
Bungarotoxin Alpha neurotoxin 035.1 0.84 0.72 0.93
HPr (E. coli) HPr (B. subtilis) 032.9 0.64 0.51 0.91
EGF (mouse) TGF (human) 030.2 0.10 0.31 0.94
Cardiotoxin III Alpha neurotoxin 030.0 0.20 0.12 0.89
Bungarotoxin Cardiotoxin III 029.8 0.71 0.52 0.92
EGF (mouse) Hirudin 023.1 0.37 0.03 0.86
Lac repressor HPr (B. subtilis) 010.4 0.30 0.15 N/A

Percent sequence identity was determined by taking the number of matches and dividing by the number of residues in the longest of the two
sequences. The values in the βH column are derived from the mean correlation coefficient of both βH1 and βH2.

TABLE 3
ACCURACY OF RESIDUE-SPECIFIC CHEMICAL SHIFT AS-
SIGNMENTS BASED ON CHEMICAL SHIFT PREDICTIONS
FROM SHIFTY AND MINIMAL CHEMICAL SHIFT DIS-
TANCE FROM OBSERVED (EXPERIMENTAL) CHEMICAL
SHIFTS

Query protein Matching protein % identity % correct

Lysozyme (hen) Lysozyme (hen) 100 100
Lysozyme (hen) Lysozyme (turkey) 093.7 092.2
Calbindin (bovine) Calbindin (porcine) 086.8 093.4
PTI (type E) PTI (type K) 061.4 067.8
HPr (B. subtilis) HPr (S. aureus) 060.9 066.7
Lysozyme (hen) Lysozyme (human) 060.8 067.4
EGF (mouse) EGF (human) 060.4 075.5
Anthopleurin A ATX I toxin 059.2 075.5
Plastocyanin (spinach) Plastocyanin (algae) 050.5 064.6
BPTI (bovine) PTI (type E) 043.1 079.3
BPTI (bovine) PTI (type K) 042.1 074.1
Bungarotoxin Alpha neurotoxin 035.1 070.3
HPr (E. coli) HPr (B. subtilis) 032.9 077.4
EGF (mouse) Hirudin 023.1 035.8
Lac repressor HPr (B. subtilis) 010.4 039.2

Percent sequence identity was determined by taking the number of
matches and dividing by the number of residues in the longest of the
two sequences.

more, if the second and third choices were considered in
the assignment protocol, the number of correct assign-
ments could often climb above 80%. Table 3 also shows
that an essentially random prediction is only capable of
getting about 35% of the assignments correct (see EGF
versus hirudin). For longer sequences with less complete
assignments, this number is expected to fall well below
30%. We have no doubt that further improvements to the
algorithm are possible and we believe that the results
shown in Table 3 nicely illustrate the potential that high-
quality chemical shift prediction methods could have in as-
sisting NMR spectroscopists with the assignment process.

Despite the limitations imposed by both the size of the
database (193 proteins in this case) and the need for
moderately high sequence (35%) homology, we estimate
that SHIFTY, in its present form, could assist with the
assignment of approximately 30% of all new proteins.
This estimate is based on the fact that approximately 55
of the 193 proteins in our current database share greater
than 35% sequence homology with at least one other
protein in the database. As the number of proteins in the
database grows and as many NMR assignment efforts
become more targeted, there is a good possibility that this
proportion could grow to more than 40% or 50% of all
new peptides and proteins.

In addition to SHIFTY’s increased accuracy, there are
a number of advantages that this program has over com-
peting methods of chemical shift prediction. These include
the fact that SHIFTY is intuitively simple and quick, it
requires only the sequence of the protein of interest for

input, it does not require high-resolution X-ray coordi-
nates, it can predict 1H chemical shifts as well as 13C
shifts with high accuracy and, most importantly, it will
always get better with time. This latter point cannot be
emphasized enough. With nearly 200 peptide and protein
assignments already deposited in our database and the
expectation that this number could grow to more than
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1000 by the year 2000, the odds that any new protein that
needs to be assigned will have a close homologue already
assigned should grow accordingly.

This exponential growth in NMR chemical shift assign-
ments points to another potential advantage for SHIFTY.
In particular, as the BMRB database grows in size, most
NMR spectroscopists will not be able to keep up with the
flood of hundreds of newly deposited protein assignments
nor will they be able to readily identify which proteins
might be homologous to their protein of interest. Having
an automated method, such as SHIFTY, available to
compare, align and predict chemical shift assignments
should reduce the many hours of overhead necessary to
conduct intensive literature searches or to manually scan,
align and compare presumptive homologues. The fact
that molecular biologists and X-ray crystallographers
have been using computer programs like SHIFTY for
more than a decade only underscores the fact that when
a data-intensive field like biomolecular NMR matures,
there eventually becomes a need to develop highly special-
ized computer tools to facilitate the handling, searching
and interpreting of those data. We believe that biomol-
ecular NMR has reached that point.

Conclusions

In this communication we have described a very simple
concept which allows precise prediction of the 1H chemi-
cal shifts of proteins and peptides. This concept, which is
called homologous assignment, is based on the fact that
homologous proteins tend to share very similar chemical
shifts. We have implemented and tested this concept using
a computer program called SHIFTY. This program com-
bines sequence comparison and alignment algorithms with
a simple chemical shift assignment algorithm. We have
shown that SHIFTY can be confidently applied to the
prediction of 1H and 13C chemical shifts whenever the
query sequence shares >35% sequence identity with a
previously assigned homologue. Under these circumstan-
ces, we have found that the 1H chemical shift predictions
are more accurate than any other method published to
date. These promising results suggest that this program
could have a broad range of applications extending from
the assignment of individual proteins from a common
family or a common fold (e.g. calcium-binding proteins,
protease inhibitors, SH2 and SH3 domains, etc.) to the
assignment of families of mutant proteins, and even to
the assignment of individual proteins containing different
ligands. It is anticipated that the utility of SHIFTY, or
other programs which make use of the homologous as-
signment concept, will increase greatly over time. This is
because homologous assignment is the only chemical shift
prediction technique that makes use of the rapidly grow-
ing database of previously assigned proteins – a database
which is now growing exponentially.
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